
Appendix-G: Storage Class Specifiers

The following are the storage class specifiers in C++. Only the highlighted will be describe in detail.

auto static

extern typedef

register

auto
Syntax

[auto] <data-definition> ;

Description

Use the auto modifier to define a local variable as having a local lifetime.

This is the default for local variables and is rarely used.

extern
Syntax

extern <data definition> ;

[extern] <function prototype> ;

Description

Use the extern modifier to indicate that the actual storage and initial value of a variable, or body of a

function, is defined in a separate source code module. Functions declared with extern are visible throughout

all source files in a program, unless you redefine the function as static.

The keyword extern is optional for a function prototype.

Use extern "c" to prevent function names from being mangled in C++ programs.

register
Syntax

register <data definition> ;

Description

Use the register storage class specifier to store the variable being declared in a CPU register (if possible), to

optimize access and reduce code.

Items declared with the register have a global lifetime.

static
Syntax

static <data definition> ;

static <function definition> ;

Description

Use the static storage class specifier with a local variable to preserve the last value between successive calls

to that function. A static variable acts like a local variable but has the lifetime of an external variable.

typedef
Syntax

typedef <type definition> <identifier> ;

Description

Use the typedef keyword to assign the symbol name <identifier> to the data type definition <type

definition>.

